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Dose proportionality/linearity is a desirable property in pharmacokinetic studies. Various methods have been proposed for
its assessment. When dose proportionality is not established, it is of interest to evaluate the degree of departure from dose
linearity. In this paper, we propose a measure of departure from dose linearity and derive an asymptotic test under a
repeated measures incomplete block design using a slope approach. Simulation studies show that the proposed method
has a satisfactory small sample performance in terms of size and power. Copyright r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In pharmaceutical research, pharmacokinetic (PK) studies are often
conducted not only to assess drug tolerance and safety in phase I
clinical development but also to characterize drug response curve
with respect to efficacy in phase II clinical development. Rodda
et al. [1] indicated that the clinical investigation of the dose
response curve in terms of some PK parameters such as area under
the blood or plasma concentration time curve (AUC) and maximum
concentration (Cmax) can be classified into categories of (i) dose
ranging study, which estimates the minimum effective dose and
maximum tolerable dose, (ii) dose response existence, and (iii) dose
response characterization, which describes the shape of the dose
response curves and decides whether there is a clinically mean-
ingful increase in response between the minimum effective and
maximum tolerable doses. Ruberg [2,3] provided a comprehensive
review of design, analysis, and interpretations of dose response
studies. For a broader and thorough discussion of statistical issues
in dose findings, see Ting [4] and Ting and Grieve [5].

Among various types of dose response relationships, dose
proportionality is probably the most desirable dose response
relationship between doses and PK responses such as AUC due to
its easy and understandable interpretation that if we double the
dose, we expect the AUC to be doubled. Under the property of
dose proportionality or linearity, PK responses can be easily
predicted with various dose levels. Dose proportionality/linearity
is often assessed based on a J� L repeated measures incomplete
block design under which study subjects are equally randomized
to one of the J dose sequences with each subject receiving
different doses at L dosing periods. As an illustration, we consider
a dose response study with four doses (60, 120, 240, and 480 mg)
under a 3� 3 unbalanced incomplete block design with three
dose sequences: 60–120–480 mg, 60–240–480 mg, and 60–120–
240 mg. This example will be examined later in the paper.

Several methods have been proposed for assessing dose
proportionaility/linearity under various designs [6]. Chow and
Liu [6] suggested a slope approach for assessing dose
proportionality/linearity. Specifically, let mi be the mean dose

response at the ith dose di, i = 1,y,I, where d1o � � �odI . Define
the adjacent slope yi = (mi11–mi)/(di11–di) for i = 1,y,I�1,
and the difference of the adjacent slopes fi = yi11–yi, for
i = 1,y,I�2. Then, dose proportionality/linearity implies that
fis are all 0. In practice, as pointed out by Chow and Liu [6] and
Law and Chow [7], when there is departure from dose linearity
(i.e. the fis are not all 0), it is of clinical importance to assess the
extent of such departure from linearity. In practice, deviation (or
departure) from the established dose proportionality/linearity is
expected, which may have a drastic impact on clinical responses
(outcomes).

In this paper, we propose a method to assess the departure
from dose linearity based on fis, the differences of the adjacent
slopes of the dose response curve. The paper is organized as
follows. In next section, a measure of departure from dose
linearity is suggested under a J� L repeated measures incom-
plete block design. Also included in this section are the
hypotheses of minor departure from dose linearity. An asympto-
tic test is proposed and a formula for sample size calculation
based on a pre-study power analysis is derived in Section 3.
Although it is based on hypothesis testing procedures, our
proposed method can also be applied in estimating the
departure from linearity, which is also given in Section 3. In
Section 4, a real example concerning a dose proportionality/
linearity study under a 3� 3 unbalanced incomplete block
design is discussed and simulations are performed to evaluate
the small sample performance of the proposed test. Some
discussions are provided in the last section.
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2. MODELS AND HYPOTHESES

Consider a dose response study involving I dose levels
d1o � � �odI , where I is assumed to be fixed. Consider a design
in which subjects are randomized to one of the J dose
sequences and each subject receives different doses at L dosing
periods. The number of dosing periods L is chosen to be smaller
than I, the number of doses in consideration. In addition, we
require that each dose appear in at least one dose sequence but
no more than once within any such dose sequence. This results
in an incomplete block design with J blocks of block size L.
According to Westlake [8], in a clinical setting, an incomplete
block design has the advantages that (i) it reduces the number
of required washout periods, (ii) it requires fewer blood samples,
and (iii) it may result in fewer patient dropouts. Alternatively,
such a design can be viewed as a special crossover design as
each patient receives more than one dose.

Let yijk be the dose response of subject k who receives dose i
in dose sequence j, i = 1,y,I, j = 1,y,J, k = 1,y,n. By design, yijk

is defined only when dose i appear in dose sequence j.
We consider the following repeated measurement model:

yijk ¼ mi1aij1diðejk1eijkÞ ð1Þ

where
PJ

j¼1 aij ¼ 0 for i = 1, y,I, diejk represents the random
effect of the subject k nested in sequence j, and dieijk represents
the random error. We assume that ejks are independent,
identically distributed (i.i.d.) as a normal random variable
with mean 0 and variance s2

s , i.e. Nð0; s2
s Þ, and eijks are i.i.d.

normally distributed as Nð0; s2
e Þ, and ejks and eijks are mutually

independent. It is important to know that aij is defined only
when dose i appears in sequence j, and thus there are a total of
J� L of such parameters. The constraint

PJ
j¼1 aij ¼ 0 for any

fixed i implies that for all the sequences that involve treatment i,
the sum of the corresponding sequence effects must be 0.
This constraint ensures that the parameters mi and aij are all
estimable as long as dose i appears in some dose sequence(s),
which is automatically satisfied by the design. Model (1) is
similar to the null-carryover-effect models considered by
Chinchilli and Esinhart [9] except that it has a heteroscedastic
variance structure, that is, the standard deviation of the dose
response yijk is proportional to the dose di. For more discussions
regarding the theory and applications of crossover designs, see
Senn [10], Vonesh and Chinchilli [11], Chow and Liu [12], and
Jones and Kenward [13].

As discussed in Section 1, dose proportionality implies that
fi = 0 for i = 1,y, I–2. In general, fi can be considered as
measuring the local nonlinearity of the dose response curve
around dose level i. To estimate fi’s, we express fi as a function
of mi’s. Specifically, let l = (m1,y,mI)

0, / = (f1,y,fI�2)0, and define
an (I– 2)� I matrix

M ¼

1

d2 � d1

d1 � d3

ðd2 � d1Þðd3 � d2Þ
1

d3 � d2

1

d3 � d2

d2 � d4

ðd3 � d2Þðd4 � d3Þ
1

d4 � d3

. .
.

1

dI�1 � dI�2

dI�2 � dI

ðdI�1 � dI�2ÞðdI � dI�1Þ
1

dI � dI�1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
then / ¼ Ml.

We first obtain an estimator of mi. Let mii0 be the number of
times that both doses i and i0 appear in the same dose sequence
and when i = i0, mii is understood as the number of times that
dose i appears in the J dose sequences. The integers mii0

0s
are completely determined by the design and do not depend
on n, the number of subjects per dose sequence. Let
�yij� ¼

Pn
k¼1 yijk=n, then m̂i ¼

PJ
j¼1 �yij�=mii , and it can be shown

that l̂ ¼ ðm̂1; . . . ; m̂IÞ
0 is an unbiased estimator of m with

covariance matrixX
¼ n�1½DK1Ds2

s 1DK2Ds2
e � ð2Þ

where D is an I� I diagonal matrix whose ith diagonal entry is di,
K1 is an I� I matrix whose (i,i0)th entry is mii0=ðmiimi0 i0 Þ, and K2 is
an I� I diagonal matrix whose ith diagonal entry is m�1

ii . Note
that by design and the constraint

PJ
j¼1 aij ¼ 0, l̂ is estimable,

hence its covariance matrix R is positive definite. Consequently,
fi can be estimated by f̂i ¼ ðm̂i12 � m̂i11=di12 � di11Þ�
ðm̂i11 � m̂i=di11 � diÞ. Alternatively, in matrix form, parameter /

can be estimated by /̂ ¼ Ml̂, which has a multivariate normal
distribution with mean / and variance MRM0. Therefore,
/̂0ðMRM0Þ�1f̂ has a noncentral chi-squared distribution with I–2
degrees of freedom and noncentrality parameter nl, denoted as
w2

I�2ðnlÞ, where

l ¼ /0½MðDK1Ds2
s 1DK2Ds2

e ÞM
0��1/: ð3Þ

For a given design, matrices M, D, K1, and K2 are all known,
thus the parameter l is a function of / and the variance
parameters s2

s and s2
e . For fixed s2

s and s2
e , l is a positive definite

quadratic form in fis, and hence can assume any positive value,
depending on the choice of fis. The parameter l can be
regarded as a squared ‘‘distance’’ between / and 0. Precisely,
l= 0 implies / = 0, i.e. dose linearity, and a large value of l
indicates a serious departure from dose linearity. On the other
hand, when / is fixed, l is a decreasing function of s2

s and s2
e ,

indicating good sensitivity to random variations. In fact, l is
closely related to the squared Mahalanobis distance used in
cluster analysis. Therefore, we choose l as a global measure of
severity of departure from dose linearity. Although dose
proportionality is the most desirable property, the power of
testing such an alternative hypothesis is equal to the size a since
the alternative space contains only one single parameter l= 0.
On the other hand, we believe strict dose proportionality is rare
and for many practical purpose, it would suffice if we could
confirm that the dose response is ‘very close to’ proportionality/
linearity, or equivalently, the departure from linearity is ‘‘minor’’.
Therefore, we consider assessing the following hypotheses for a
minor departure from dose linearity

H0 : lXl0; versus H1 : lol0 ð4Þ
3
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where l0 is a pre-specified clinically relevant limit. The choice of
l0 will be further discussed in Sections 4 and 5. We set minor
departure as the alternative because that is the property that we
are eager to establish.

3. MINOR DEPARTURE FROM DOSE LINEARITY

3.1. Testing method

To derive a test for (4), we need to estimate the variance
components s2

s and s2
e . Let nij = (mi1aij)/di, then mijk = yijk/di

satisfies model

uijk ¼ nij1ejk1eijk

It can be shown that

ds2
s 1s2

e ¼
XJ

j¼1

XI

i¼1

Xn

k¼1

ðuijk � �uij:Þ
2=½JLðn� 1Þ� ð5Þ

and

ŝ2
s ¼

X
i 6¼i0;mii040

XJ

j¼1

Xn

k¼1

ðuijk � �uij:Þðui0 jk � �ui0j:Þ=

½JLðL� 1Þðn� 1Þ�

ð6Þ

are unbiased estimators of s2
s 1s2

e and s2
e , respectively. Let R̂ be

the estimator of R with s2
s and s2

e replaced by ŝ2
s and ds2

s 1s2
e �

ŝ2
s defined in (5) and (6), respectively, and define

T ¼ l̂0M0ðMR̂M0Þ�1Ml̂0 ð7Þ

Theorem 1. Assume model (1) and let T be defined as in (7),
then T is asymptotically distributed as w2

I�2ðnlÞ as n-N. Thus,
an asymptotic size a test rejects H0 in (4) if and only if
Tow2

I�2;1�aðnl0Þ, where w2
m;aðxÞ is the (1�a)th percentile of a

noncentral chi-square random variable with noncentrality
parameter x and m degrees of freedom.

Proof: Since l̂ has a multivariate normal distribution with
mean l and covariance matrix S, then /̂ ¼ Ml̂ has a multivariate
normal distribution with mean / and covariance matrix MRM0.
Therefore, l̂0M0ðMRM0Þ�1Ml̂ has a noncentral chi-square distri-
bution with I2 (the rank of M) degrees of freedom and
noncentrality parameter nl. Since R̂ is a consistent estimator
of R as n-N, T defined in (7) has an asymptotic noncentral chi-
square distribution. The result follows from the fact that T is
asymptotically distributed as w2

I�2ðnlÞ, and the function P(Tot) is
a decreasing function of l for any fixed t. Hence, suplXl0

Pl�
ðTotÞ ¼ Pl0

ðTotÞ ¼ a when t ¼ w2
I�2;1�aðnl0Þ. This completes

the proof.
When the sample size n per dose sequence is small, it is well

known that w2
I�2ðnlÞ is not a good approximation of the

distribution of T. By mimicking the Hotelling’s T2 distribution, we
suggest using ðJðI � 2Þðn� 1Þ=Jðn� 1Þ � I13ÞFI�2;Jðn�1Þ�I13ðnlÞ
to approximate the distribution of T. As the result, when n is
small, we reject H0 in (4) if and only if ToðJðI � 2Þðn� 1Þ=
Jðn� 1Þ � I13ÞFI�2;Jðn�1Þ�I13;1�aðnlÞ, where Fa;b;a (x) denotes the
(1a)th percentile of the noncentral F-distribution with degrees of
freedom (a, b) and noncentrality parameter x. The small sample
distribution of T may also be approximated by a noncentral
F-distribution based on a Kenward-Roger type method [14] but
the determination of the denominator degrees of freedom is
computationally involved.

From Theorem 1, it is seen that the size and the power of the
proposed test are univariate functions of l. Although handling

univariate functions is mathematically convenient, it is of
practical advantage to view the size and the power as functions
of the nuisance parameters fis, s2

e , s2
s , and design parameters as

these parameters have clear clinical interpretations. On the
other hand, it is true that since l is a smooth deterministic
function of fi’s, s2

e , s2
s , and design parameters, the size and the

power of the proposed test will change smoothly as these
nuisance parameters vary smoothly.

3.2. Sample size calculation

Sample size calculation can be obtained based on a pre-study
power analysis for achieving a desired power of 1�b. We
propose the following formula for sample size calculation.

Theorem 2. Consider testing hypotheses in (4) under model
(1). To achieve a desired power of 1 � b at a given alternative
value l at the a level of significance, the number of subjects n
required for each dose sequence is given by

n ¼ max 4 zb
ffiffiffi
l

p
1za

ffiffiffiffiffi
l0

p� �2

=ðl0 � lÞ2; 2
� �

ð8Þ

Proof: Under a given alternative lol0 in (4), the test statistic
T in (7) is distributed as a noncentral chi-square random variable
with noncentrality parameter nl and I�2 degrees of freedom.
As indicated in Johnson et al. [15], when n is large, the
noncentral chi-square distribution w2

I�2ðnlÞ can be approximated
by a normal distribution as follows:

w2
I�2ðnlÞ ¼ NðI � 21nl; 2I � 414nlÞ1Opðn�1=2Þ ð9Þ

By (9), the following equation:

Pðw2
I�2ðnlÞow2

I�2;1�aðnl0ÞÞ ¼ 1� b

is asymptotically equivalent to

nðl0 � lÞ � za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðI � 2Þ14nl0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðI � 2Þ14nl

p ¼ zb

or approximately (as n - N),

ffiffiffi
n

p
ðl0 � lÞ

2
ffiffiffi
l

p � za

ffiffiffiffiffi
l0

l

r
¼ zb

The result follows after solving the above equation and realizing
the constraint that nX2 to ensure that s2

s and s2
e are estimable.

We make some remarks on formula (8). First, it is easily
verified that n is an increasing function of l over the alternative
space [0, l0] in (4). Therefore, by setting l= 0, which
corresponding to dose linearity, we obtain the minimal sample
size as nmin ¼ maxf4z2

a=l0; 2g. On the other hand, when l is
close to the threshold value l0, the sample size required is
approximately 4l0ðzb1zaÞ

2=ðl� l0Þ
2, hence the increase in

sample size would be drastic. Second, intuitively the choice of
design parameters J and L may have a direct impact on the
sample size. However, we see that l, hence the desired sample
size n, depends on J and L only through the design
configuration parameters mii0s, which cannot be uniquely
determined by J and L. Therefore, selection on J and L alone
generally will not yield a design with optimal sample size. On
the other hand, it would be interesting, yet challenging, to find
the optimal mii0

0s when J and L are pre-fixed based on either
economic or administrative consideration. 3
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3.3. Departure from dose linearity as an estimation problem

Our proposed method is based on hypothesis testing proce-
dures. Conducting such a procedure entails a choice of the
threshold value l0. Some guidance on the choice of l0 will be
provided in Section 4. In reality, it is hard, if not impossible, to
make an objective selection of l0. One way to avoid the
selection of l0 is to treat the problem of assessing the departure
from dose linearity as an estimation problem as is suggested by
one of the referees.

The local departure from dose linearity at dose di is
characterized by fi, the difference in the adjacent slopes,
i = 1,y,I�2. In Section 3.1, /, the vector of the local departures,
is estimated as Mm̂. Then the asymptotic 100� (1�a)% confi-
dence region is given by f/ : ð/̂� /Þ0ðMR̂MÞ�1ð/̂� /Þpw2

I�2;ag,
where w2

m;a is the (1�a)th percentile of a chi-square random
variable with m degrees of freedom.

As is mentioned in Section 2, the global departure measure
l is a squared distance between / and 0. Since the test
statistic T in (7) is asymptotically distributed as w2

I�2ðnlÞ,
we obtain an asymptotically unbiased estimate of l as
l̂ ¼ max ðT=nÞ � ððI � 2Þ=nÞ; 0

� �
. Define

l̂L ¼ max l̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l̂
n

1
2I � 4

n2

s
; 0

8<:
9=;;

l̂U ¼ l̂1za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l̂
n

1
2I � 4

n2

s ð10Þ

then by (9), ½l̂L; l̂U� is an asymptotical 100� (1�a)% confidence
for l, where za denotes the (1�a)th percentile of standard
normal distribution. Using the small sample approximation
suggested at the end of Section 3.1, an asymptotically unbiased
estimator with small sample correction is given by
~l ¼ maxf 1� ððI � 1Þ=Jðn� 1ÞÞ

	 

T=n� ððI � 2Þ=nÞ; 0g. Define ~lL

and ~lU by replacing l̂ with l̂ in the expressions of l̂L and l̂U in
(10), then [ ~lL; ~lU ] is an asymptotical 100 � (1�a)% confidence
interval for l with small sample correction.

4. NUMERICAL STUDIES

4.1. An example

4.1.1. Design and data

To illustrate the proposed testing procedure for assessing minor
departure from linearity, we consider a dose response study
conducted on 18 subjects for evaluation of dose linearity of a
pharmaceutical compound. The study involved four dose levels:
60, 120, 240, and 480 mg. There were threes dose sequences
and each dose sequence consisted of three different doses.
Thus, I = 4, J = 3, and L = 3. The 18 subjects were randomized
to the three dose sequences with six subjects in each dose
sequence (i.e. n = 6). Within a given dose sequence, AUC data
were obtained at three different dosing periods for every
subject. The AUC data are given in Table I.

The mean dose responses at the four dose levels are
estimated as l̂ ¼ (190:57; 459:73; 1297:75; 3400:98)0 with the
corresponding differences in the adjacent slopes estimated as
f̂1 ¼ 2:49; f̂2 ¼ 1:78. The variance components s2

s and s2
e are

estimated as ŝ2
s ¼ 5:12 and ŝ2

e ¼ 0:69, respectively. The plot of

dose response profiles for the three dose sequences together
with the mean dose responses profile (Figure 1) suggest that the
departure from linearity might not be minor since the mean
response at 480 mg is more than double than the expected
mean responses if the dose proportional holds.

4.1.2. Choosing l0

To test the hypotheses (4), we must choose a l0. Since l is a
global measure of nonlinearity, it is reasonable to compute l for
a collection of common dose response patterns and choose l0

such that the departure from linearity in the true dose response
is no more serious as some of the common response patterns.
For the given example, we propose to consider the following
four types of dose response curves whose plots are shown in
Figure 2:

linear dose curve : response ¼ 7:08 dose ð11Þ

square root dose curve : response ¼ 155:19
ffiffiffiffiffiffiffiffiffiffi
dose

p
ð12Þ

quadratic dose curve : response ¼ 0:015 dose2 ð13Þ

logistic dose curve :

response ¼ 3400 11expf�ðdose� 240Þ=35g
� ��1

ð14Þ

The above dose response curves are chosen such that they all
pass through the origin and approximately the point (480,
3400), where 3400 is the estimated mean AUC at the highest
dose 480 mg from the example data. From Table I, we have
(ŝs; ŝeÞ ¼ ð2:26; 0:83), the estimated values based on the
example data. We then compute the value l as 0.00, 1.22,
4.60, 7.03 for the dose patterns (11) through (14), respectively.
We may choose l0 = 1.22, if we view the departure from linearity
in the square root dose response curve in Figure 2 as minor. In
practice, such a decision should be made in collaboration with
clinical scientists.3

6
0

Table I. AUC data.

Dose levels

Sequence
Subject

ID 60 mg 120 mg 240 mg 480 mg

1 1 35.25 227.95 2797.65
1 4 70.50 268.30 2738.00
1 8 412.05 911.90 5967.25
1 11 49.85 218.60 1714.10
1 15 334.60 717.00 4777.30
1 18 439.00 839.85 4354.10
2 2 63.45 990.70 2649.60
2 6 207.35 1229.65 3110.15
2 9 99.70 829.80 2207.95
2 12 280.30 2144.20 4332.15
2 13 268.70 1690.15 4217.55
2 16 130.55 605.85 1945.90
3 3 213.85 529.90 1302.15
3 5 285.95 717.60 2318.40
3 7 66.20 111.50 862.50
3 10 105.20 321.55 780.65
3 14 74.45 301.10 1249.60
3 17 293.35 351.50 1569.30
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4.1.3. Illustration of the procedure

We illustrate the proposed testing procedure with l0 = 1.22,
selected empirically in the previous section. The covariance
matrix of l̂ is estimated as

R̂ ¼

1162:03 2048:26 4096:53 8193:06
2048:26 6972:17 6144:79 12 289:59
4096:53 6144:79 27 888:67 24 579:17
8193:06 12 289:59 24 579:17 111 554:67

0BB@
1CCA

and the test statistic is T = 6.27. Using the small sample version
of the test described at the end of Section 3.1, we fail to
reject the null hypothesis in (4) since T ¼ 6:274ð30=14Þ
F2;14;0:95ð6� 1:22Þ ¼ 1:83, implying that there is no statistical

evidence to conclude that the departure from linearity
is minor.

4.2. Simulation results

Simulation studies were conducted to evaluate the finite sample
performances of the proposed test derived in Section 3.
We closely follow the design setting of the example discussed
in the previous section, that is, dose levels: d1 = 60 mg,
d2 = 120 mg, d3 = 240 mg, and d4 = 480 mg, three dose
sequences and three dose periods for each sequence. The
configuration of the design is

d1 d2 d4

d1 d3 d4

d1 d2 d3

ð15Þ

with rows indicating the dose sequences and columns indicating
the dose periods. Then, the matrices K1 and K2 in (2) are

K1 ¼
1

12

4 4 4 4
4 6 3 3
4 3 6 3
4 3 3 6

0BB@
1CCA; K2 ¼

1

6

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

0BB@
1CCA

In our simulations, we considered the four dose response
patterns specified in (11) through (14). We choose l0 = 1.22,
which means that the logistic pattern (14), the quadratic pattern
(13), and the square root pattern (12) correspond to the null
hypothesis in (4), whereas the linear pattern (11) corresponds to
the alternative hypothesis.

We used the square root pattern (12) to illustrate how the
data were generated and the simulation process under the
other three patterns described above are similar. First, the mean
dose response mi was determined via Equation (14) as
l = (1202.10, 1700.02, 2404.19, 3400.04)0 and then the 3� 3 =
9 parameters aij in (1) were set as the corresponding estimated
values based on the example data. Precisely,

a11 a21 a41

a12 a32 a42

a13 a23 a33

0@ 1A ¼ 32:96 70:87 323:76
�15:56 �49:35 �323:76
�17:41 �70:87 49:35

0@ 1A
Check that

PJ
j¼1 aij ¼ 0 is indeed satisfied for any i, i = 1, 2, 3.

Then the resulting mean dose response matrix corresponding to
the configuration (15) is given by

1235:06 1770:89 3723:80
1186:54 2354:84 3076:28
1184:69 1629:15 2453:54

0@ 1A
Then, we generated yijk by adding random components di(ejk1eijkl)
to the mean dose response, assuming ss = 2.26, se = 0.83.

The probability of rejecting H0 in (4) (i.e. claiming departure
from linearity as being minor) under the four dose response
patterns were estimated based on 10 000 simulation runs
and the results are presented in Table II for n = 6, 10, 14, 18.
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Figure 1. Plot of dose response profiles. Solid dots represent the mean responses.

Table II. Estimated size or power with l0 = 1.22 for testing (4).

Size Power

N Logistic l= 7.03 Quadratic l= 4.60 Square root l= 1.22 Linear l= 0.00

6 0.0000 0.0000 0.0529 0.5818
10 0.0000 0.0000 0.0502 0.8619
14 0.0000 0.0000 0.0518 0.9638
18 0.0000 0.0000 0.0470 0.9888
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The simulation results indicate that the proposed test has a
controlled type one-error rate and a power of at least 85% when
there are 10 or more subjects per dose sequence.

5. DISCUSSION

Law [7] briefly described a way to test the departure from dose
linearity based on a parametric regression model by focusing on
some particular dose response curves. Similar method was also
discussed in Senn [16]. The approach we adopt in this paper is
essentially an ANOVA model approach, which enables us to
detect more patterns of departure from dose linearity. As is true
for any ANOVA method, the test we propose is an overall test of
departure from dose linearity and it does not directly identify
where the departure occurs. The latter question could be
addressed by testing whether fi is close to 0 using a t-type test
for each i, i = 1,y, I�2, followed by an adjustment to control
for the family wise error rate due to multiple testing.
Alternatively, the locations of departure from dose linearity
could be identified based on the asymptotic confidence region
for / provided in Section 3.3.

As a quadratic form of fis, the parameter l can be viewed as a
squared Mahalanobis distance between / and 0. Although other
choices of l, for example,

PI�2
i¼1 f2

i =ðs
2
s 1s2

eÞ, are possible, the
tests based on such choices are generally complicated and
conservative. Geometrically, the distance measure l defined in
this paper can be viewed as the total curvatures of the dose
response curves (see Figure 2). Therefore, the proposed test is
more powerful in detecting more ‘wiggled’ departure patterns.

In Section 4.1, we describe how to choose the tolerance l0

empirically based on some common dose response patterns
when the number of dose levels, the number of dose sequences,
and dosing periods have been determined are pre-specified,
and ss and se can be estimated from pilot data. However, the
clinical relevance of such a l0 must be justified by clinicians
before it can be used in assessing departure from dose linearity.
Alternatively, when pilot data are available, an asymptotic
confidence interval for l could be constructed as is performed in
Section 3.3, and based on this confidence interval, a reasonable
value of l0 could be selected for subsequent studies.

As mentioned in Section 2, although dose proportionality is a
desirable property, confirming it statistically requires testing
H1: l= 0, an alternative consisting of a single value. A test of
such a hypothesis will have power equal to the size. On the
other hand, from a practical point of view, for prediction
purpose, it is often adequate to confirm that the dose response
curve is almost linear, or equivalently, the departure from

linearity is at most ‘minor’, which clearly includes dose
proportionality as a special case. As shown in this paper, testing
for minor departure from dose linearity is meaningful in both
statistical and practical sense. Therefore, we recommend testing
for minor departure from dose linearity instead of dose
proportionality be considered in clinical and PK utility.
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